Page 58 - Ικανότητες μαθητών Ε'-ΣΤ' Δημοτικού στα κλάσματα και επίλυση προβλήματος
P. 58
Λεμονίδης, Χ., Θεοδώρου, Ε., Νικολαντωνάκης, Κ., Παναγάκος, Ι., & Σπανακά, Α. (2007).
Μαθηματικά Γ΄Δημοτικού, Βιβλίο Δασκάλου (2η έκδ.) ΥΠΕΠΘ-ΠΙ, ΟΕΔΒ.
Levine, D. R. (1982). Strategy Use And Estimation Ability Of College Students. Journal for
Research in Mathematics Education, 13(5), 350-359.
Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal
arithmetic so difficult? Developmental Review, 38, 201–221.
Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of
fundamental mathematics in China and the United States. New Jersey: Lawrence Erlbaum.
Mack, N.K. (1995). Learning fractions with understanding: building on informal knowledge.
Journal of Mathematics Education, 21(1), 16-32.
McIntosh, A. (2004). Where we are today. In A. McIntosh & L. Sparrow (Eds.), Beyond
written computation 3-14. Perth: MASTEC.
Marshall, S.P. (1993). Assessment of Rational Number Understanding: A Schema-Based
Approach. In T.P. Carpenter, E. Fennema, & T.A. Romberg (Eds.), Rational Numbers: An
Integration of Research, (pp. 261-288). New Jersey: Lawrence Erlbaum Associates.
Martin, W.G. et al., eds (2007). The Learning of Mathematics, 69th NCTM Yearbook,
National Council of Teachers of Mathematics.
Mildenhall, P., Hackling, M., & Swan, P., (2009). Computational estimation in the primary
school: A single case study of one teacher’s involvement in a professional learning intervention. In
L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education:
Proceedings of the 33rd Annual Conference of the Mathematics Education Research Group of
Australasia. Fremantle: MERGA.
Moss, J. (2005). Pipes, tubes, and beakers: New approaches to teaching the rational-number
system. In M. S. Donovan & J. D. Bransford (Eds.), How students learn: Mathematics in the
classroom (pp. 121–162). Washington, DC: National Academic Press.
Moss, J., Case, R. (1999). Developing children’s understanding of the rational numbers: A
new model and an experimental curriculum, Journal for Research in Mathematics Education, 30,
122-147.
Μπεμπένη, Μ., & Βαμβακούση, Ξ. (2014). Εννοιολογική και διαδικαστική γνώση για τα
κλάσματα στην Α΄ και Γ΄ Γυμνασίου: Τι (δεν) αλλάζει; Στα Πρακτικά του 5ου Συνεδρίου της
Ένωσης Ερευνητών της Διδακτικής των Μαθηματικών (ψηφιακή μορφή, ISSN: 1792-8494).
58